Identifying efficient chemical-based nucleic-acid transfection compound for primary neurons and neuronal cell lines

Fanny Peltomart, Valérie Moreau-Toussaint, Thibaut Benchimol, Mégane Denu, Maxime Dumont, Guillaume Freund, Perrine Friedel, Yann Philippin, Malik Heffel, Patrick Erbacher
Polyplus-transfection©, Bioparc, 850 Boulevard Sébastien Brant, 67401 Illkirch, France

Abstract: Efficient gene expression in neurons is indispensable for the study of neuronal cell biology, such as investigating gene and protein function, cell behavior and/or cell morphology. The need for more physiologically relevant cellular models has become a requirement to further validate studies performed in neurons cell lines that are easier to transfect compared to primary neurons. Primary neurons are fragile and difficult to transfect, and with currently available transfection method other Tak less in transfection efficiency or cell viability. Currently, the most efficient methods for generating gene delivery into slow non-dividing neurons are electroporation or viral-based transduction methods. These methods are often associated with side effects on cellular viability and morphology. Here we describe the screening of a new library of chemical compounds to identify candidates as potent DNA transfection reagents in different primary neurons (such as primary hippocampal or cortical neurons from rat) and neuronal cell lines. Following the optimization of this-to-to-load, we selected the best candidate based on its high transfection efficiency and its ability to maintain excellent cell viability and morphology.

Introduction

Transfection of primary neurons and neuronal cells is a challenge for many researchers. The available DNA transfection reagents usually result in low transfection efficiency and are toxic for the cells. Taking into consideration the difficulties encountered and based on our expertise in transfection, we are currently developing a novel DNA transfection reagent, FP9219. This compound is promising, as it improves DNA delivery and intracellular transport, leading to an efficient gene expression.

As an alternative, mRNA transfection using jetMESSENGER® can be an efficient approach to transfect primary neurons and neuronal cells. This poster will present the results obtained with both approaches.

Efficient gene expression in primary neurons and neuronal cells with FP9219

Increased gene expression when switching to mRNA transfection using jetMESSENGER®

GFP expression was assayed by fluorescence microscopy in different cell types 24h post-transfection of plasmid encoding GFP (pCMV-EGFP) with FP9219. Cell morphologies are maintained and neurites networks fluorescent are clearly visible following transfection with FP9219.

mRNA-EGFP expression in Neuronspheres with jetMESSENGER®

Following jetMESSENGER®-mediated mRNA transfection, the neurospheres were stained with DAPI (cell viability in blue), GFP (transfected cells, in green) and GfAP (neuronal cells, in red).

Conclusion

Transfection with FP9219 and jetMESSENGER® preserves cell viability and morphology of sensitive cells as it requires low amount of nucleic acid and volume of reagent, while reaching high transfection efficiency in physiological conditions. Transfection using these reagents is straightforward and provides reproducible results.

- **Approaches**: Two different solutions to transfect Neurons or Neuronal cells (DNA or mRNA)
- **Highly efficient**: Reach high gene expression in several cells types
- **Cost-effective**: Use low reagent volume and DNA/mRNA amounts
- **Biologically relevant**: Keep a high cell viability & preserve morphology
- **Simplicity**: Transfect with an optimized easy and fast protocol

For any question contact : support@polyplus-transfection.com

jetMESSENGER® is a trademark of Polyplus-transfection S.A.

Lipofectamine® is a trademark of Life Technologies Corporation.

www.polyplus-transfection.com