Overview

Specifications

Reagent

jetSI 10 mM

Molecule delivered

siRNA

Applications

in vivo siRNA transfection

Targeted organs

Brain

Injection route

Intracranial injection
Stereotaxical injection
Intraventricular injection

Number of transfections

500 µl of jetSI 10 mM delivery reagent is sufficient to deliver up to 2.5 mg of siRNA to mouse brain (c.a. 100 ng of siRNA per injection).

Storage

5°C ± 3°C, for at least 6 months


Summary

in vivo-jetPEI® is broadly used as an in vivo transfection reagent. However, for siRNA delivery to the brain, Polyplus-transfection® has developed jetSI 10 mM.

The choice of the most effective siRNA carrier may depend on the in vivo context. Indeed, while in vivo-jetPEI® is superior to cationic liposomes for plasmid DNA delivery in the mouse brain, jetSI 10 mM was found to be the carrier of choice for siRNA delivery to this organ (Froidevaux et al. (2006), EMBO Rep 7:1035; Guissouma et al. (2006), Neurosci Lett 406: 240; Kumar et al. (2006), PLOS Med. 3: 0505; Hassani et al. (2005), J Gene Med 7:198).

When using plasmid based approaches (shRNA) in the brain, we recommend in vivo-jetPEI®.

Ordering information

Reference NumberAmount of reagent
403-050.5 ml

Applications

in vivo functional studies

jetSI 10 mM is perfectly suited to study gene function in the brain in vivo and provides a useful method for the validation of in vitro functional studies into animals.

Citations

Here is a selection of relevant references using jetSI 10 mM, more are available in our Polyplus-transfection Database.

Cheret, C., Gervais, A., Lelli, A., Colin, C., Amar, L., Ravassard, P., Mallet, J., Cumano, A., Krause, K. H., Mallat, M. (2008). Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase., J Neurosci 28, 12039.

Griggs, E. M., Young, E. J., Rumbaugh, G., Miller, C. A. (2013). MicroRNA-182 regulates amygdala-dependent memory formation., J Neurosci 33, 1734.

Karatas, H., Erdener, S. E., Gursoy-Ozdemir, Y., Lule, S., Eren-Kocak, E., Sen, Z. D., Dalkara, T. (2013). Spreading depression triggers headache by activating neuronal Panx1 channels., Science 339, 1092.

Tai, D. J., Hsu, W. L., Liu, Y. C., Ma, Y. L., Lee, E. H. (2011). Novel role and mechanism of protein inhibitor of activated STAT1 in spatial learning., Embo J 30, 205-2.

Young, E.J., Blouin, A.M., Briggs, S.B., Sillivan, S.E., Lin, L., Cameron, M.D., Rumbaugh, G., Miller, C.A. (2015). Nonmuscle myosin IIB as a therapeutic target for the prevention of relapse to methamphetamine use., Mol Psychiatry. doi: 10.1038/mp.2015.103.

Quality

Polyplus-transfection® is ISO 9001 Quality Management System accredited since 2002; this level of certification assures global customers that the supplier has established reliable and effective processes for product development, manufacturing, sales and customer support.

Testimonials

« I finished the experiments and I think in vivo-jetPEI works great. I am very pleased with the results. Actually some of the work we have done with in vivo-jetPEI® as well as jetSI 10 mM has been published in Science. I would like to tell you that I am also very pleased with the technical assistance. Many thanks! »
 E.E.K., Hacettepe University, Turkey 
  

Protocol

To view our protocols, please fill in the fields below and click download.

Other files

Bibliography

Order by :  
Found 17 results :
Cell Linein vitro
in vivo
Delivered MoleculeReagentResults & Citations
-in vivoshRNA plasmid, siRNAin vivo-jetPEI, jetSI 10 mM
Karatas, H., Erdener, S. E., Gursoy-Ozdemir, Y., Lule, S., Eren-Kocak, E., Sen, Z. D., Dalkara, T. (2013)

Science 339, 1092-5
Spreading depression triggers headache by activating neuronal Panx1 channels
More details
-in vivosiRNAjetSI 10 mM
Bender, A. C., Natola, H., Ndong, C., Holmes, G. L., Scott, R. C., Lenck-Santini, P. P. (2013)

Neurobiol Dis 54, 297-307
Focal Scn1a knockdown induces cognitive impairment without seizures
More details
-in vivosiRNAjetSI 10 mM
Cakir, I., Perello, M., Lansari, O., Messier, N. J., Vaslet, C. A., Nillni, E. A. (2009)

PLoS One 4, e8322
Hypothalamic Sirt1 regulates food intake in a rodent model system
More details
-in vivosiRNAjetSI 10 mM
Carlsson, Y., Schwendimann, L., Vontell, R., Rousset, C. I., Wang, X., Lebon, S., Charriaut-Marlangue, C., Supramaniam, V., Hagberg, H., Gressens, P., Jacotot, E. (2011)

Ann Neurol 70, 781-9
Genetic inhibition of caspase-2 reduces hypoxic-ischemic and excitotoxic neonatal brain injury
More details
-in vivosiRNAjetSI 10 mM
Chauvier, D., Renolleau, S., Holifanjaniaina, S., Ankri, S., Bezault, M., Schwendimann, L., Rousset, C., Casimir, R., Hoebeke, J., Smirnova, M., Debret, G., Trichet, A. P., Carlsson, Y., Wang, X., Bernard, E., Hebert, M., Rauzier, J. M., Matecki, S., Lacampagne, A., Rustin, P., Mariani, J., Hagberg, H., Gressens, P., Charriaut-Marlangue, C., Jacotot, E. (2011)

Cell Death Dis 2, e203
Targeting neonatal ischemic brain injury with a pentapeptide-based irreversible caspase inhibitor
More details
-in vivosiRNAjetSI 10 mM
Cheret, C., Gervais, A., Lelli, A., Colin, C., Amar, L., Ravassard, P., Mallet, J., Cumano, A., Krause, K. H., Mallat, M. (2008)

J Neurosci 28, 12039-51
Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase
More details
-in vivosiRNAjetSI 10 mM
Dominska, M., Dykxhoorn, D. M. (2010)

J Cell Sci 123, 1183-9
Breaking down the barriers: siRNA delivery and endosome escape
More details
-in vivoDNA, siRNAjetSI 10 mM
Froidevaux, M. S., Berg, P., Seugnet, I., Decherf, S., Becker, N., Sachs, L. M., Bilesimo, P., Nygard, M., Pongratz, I., Demeneix, B. A. (2006)

EMBO Rep 7, 1182
The co-chaperone XAP2 is required for activation of hypothalamic thyrotropin-releasing hormone transcription in vivo
More details
-in vivomimic miRNAjetSI 10 mM
Griggs, E. M., Young, E. J., Rumbaugh, G., Miller, C. A. (2013)

J Neurosci 33, 1734-40
MicroRNA-182 regulates amygdala-dependent memory formation
More details
-in vivoDNA, siRNAjetSI 10 mM
Guissouma, H., Froidevaux, M. S., Hassani, Z., Demeneix, B. A. (2006)

Neurosci Lett 406, 240-3
In vivo siRNA delivery to the mouse hypothalamus confirms distinct roles of TR beta isoforms in regulating TRH transcription
More details