Overview
Specifications
Reagent | jetPRIME® |
---|---|
Molecule delivered | DNA, siRNA, DNA & siRNA |
Applications | Plasmid transfection |
Cell types | Adherent cell lines grown in presence of serum |
Number of transfections | 1.5 ml of jetPRIME® transfection reagent is sufficient to perform up to 1500 transfections in 24-well plates or 375 transfections in 6-well plates |
Storage | Store jetPRIME® at 5 °C ± 3°C. |
Provided with | jetPRIME® buffer |
Summary
jetPRIME® is a powerful and versatile DNA and siRNA transfection reagent for day-to-day experiments that leads to efficient and reliable scientific results. jetPRIME® ensures high DNA transfection efficiency and excellent gene silencing in a variety of adherent cells. jetPRIME ® is also ideal for DNA/siRNA co-transfection or co-delivery of several plasmids. Furthermore, our jetPRIME® reagent is very gentle on cells since it requires low amounts of reagent and nucleic acid during transfection.
Ordering information
Reference Number | Amount of reagent | Amount of buffer |
---|---|---|
101000027 | jetPRIME® 0.1 mL | 5 ml |
101000015 | jetPRIME® 0.75 mL | 60 ml |
101000046 | jetPRIME® 1.5 mL | 2 x 60 ml |
101000001 | jetPRIME® 5 x 1.5 mL | 10 x 60 ml |
201000003 | x | jetPRIME® buffer 60 ml |
Description
Superior transfection efficiency
jetPRIME® is a powerful transfection reagent for day-to-day experiments. It leads to unusually high percentage of transfected adherent cell lines of various origins as well as primary cells.
Superior transfection efficiencies ranging between 70 and 90% were obtained with jetPRIME® reagent versus the top competitor’s reagent for several commonly used cell lines (Fig.1 & Fig.2).
Fig. 1: Comparative transfection efficiency of jetPRIME versus its main competitor. Transfection efficiency was assessed by FACS analysis in various cell lines 24 h after transfection in 24-well plates. Conditions were used according to the manufacturer’s recommendation for both Lipofectamine® 2000 and for jetPRIME®.
Fig. 2: Comparative transfection efficiency of jetPRIME® versus Lipofectamine® 3000. Transfection efficiency was assessed by FACS analysis in various cell lines 24 h after transfection in 96-well plates or 24-well plates. Conditions were used according to the manufacturer’s recommendation for lipofectamine® 3000 and for jetPRIME®.
Cost-effective: less DNA and less reagent
jetPRIME® is a powerful in vitro transfection reagent that requires a small amount of reagent and plasmid DNA, making its use very cost-effective (Table 1).
Table 1: Recommended conditions to use. Amounts of DNA and reagent (jetPRIME® and competitors) per well in 6-well plate for transfection according to manufacturers’ recommendations.
In addition to reducing costs, using less DNA also minimizes adverse cytotoxic effects triggered by transfection. Hence, jetPRIME® is the reagent of choice for high transfection efficiency with excellent cell viability.
Better cell viability
jetPRIME® is extremely gentle on cells during transfection leading to increased cell viability and improved transfection results. Cells transfected with jetPRIME® are healthy, while major cytotoxicity is observed with competitors (Fig.3).
Fig. 3: Cell viability 24h after transfection. Phase contrast microscopy of HeLa cells 24 h after transfections performed according to the manufacturer’s recommendations for each reagent.
Easy to use protocol
jetPRIME® is an easy-to-use transfection reagent (Fig.4):
- Fast and easy to scale up and down
- Compatible with serum and antibiotics
Fig. 4: jetPRIME® protocol. Convenient protocol for DNA, siRNA and co-transfection of DNA and siRNA.
Take a look at our Expert Tips to ace DNA transfection in our blog section.
FAQ
If you have any questions regarding jetPRIME®, please visit our dedicated Frequently asked questions or contact us.
Applications
Plasmid transfection
jetPRIME® leads to remarkably high percentages of transfected adherent cell lines of various origin, as well as primary cells (Table 1).
Table 1: Transfection efficiency of various cell types using jetPRIME®. The percentage of GFP-positive cells was determined by FACS analysis 24 h after transfection.
Plasmids are small circular DNA molecules that are commonly found in bacteria. Plasmids exist and replicate separately from chromosomal DNA and in bacteria they often carry genes that are beneficial for bacterial survival. Plasmids can be deliberately introduced into desired cells and utilized to overexpress a gene of interest in a specific cell line. This procedure is called DNA transfection and is a commonly used method for studying gene function or protein of interest.
Genome editing
The use of the CRISPR/Cas9 system in mammalian cells has recently emerged as a very convenient way to modify the cell genome at a specific locus. It involves transient transfection into mammalian cells of either (a) one or several plasmids coding for Cas9, the specific gRNA and eventually the sequence to be inserted, or (b) a mix of one or two plasmids and an RNA molecule (the gRNA).
Available application note: CRISPR/Cas9-mediated gene disruption using jetPRIME®.
siRNA transfection
jetPRIME® leads to over 90% knockdown of endogenous gene expression in a variety of cell lines. For example, jetPRIME®-mediated transfection of HeLa cells with 10 nM siRNA duplexes targeting endogenous lamin A/C in HeLa cells drastically reduces lamin A/C gene expression to barely detectable level (Fig. 1).
Fig. 1: Endogenous lamin A/C silencing using jetPRIME®. HeLa cells were transfected with 10 nM of 21-mer lamin A/C siRNA. After 48 h, lamin A/C silencing was assessed by immunofluorescence microscopy using an antibody against lamin A/C .
Co-transfection of different nucleic acids
jetPRIME® is well suited for DNA and siRNA/ miRNA co-transfection experiments or co-delivery of several DNA plasmids.
We performed DNA and siRNA delivery with jetPRIME® and observed highly efficient gene silencing in a variety of cell lines with very low toxicity. Over 90% silencing is achieved in adherent cells, using 10 nM siRNA (Fig. 2).
Fig. 2: Exogenous luciferase silencing in several cell lines after DNA & siRNA cotransfection using jetPRIME®. Experiments were performed with 400 ng p4CMV-Luc and 10 nM of luciferase siRNA per well in 6-well plates.
Quality
Every batch of jetPRIME® reagent is tested in-house by DNA transfection of HeLa cells with a GFP-expressing plasmid and each vial of reagent is provided with Certificate of Analysis.
Testimonials
Thank you PolyPlus for developing this reagent for researchers.
Protocol
In order to download a product protocol or a certificate of analysis, please create an account on Polyplus-transfection® Portal.
Why would you need to create an account?
In this personal area you will have access to:
- Product Protocols
- Certificates of Analysis
- Exclusive webinars/articles
- And surprise features!
Other files
Related blog posts
Bibliography
Cell Line | in vitro in vivo | Delivered Molecule | Reagent | Results & Citations | |
---|---|---|---|---|---|
Flp-In T-REx 293 | in vitro | DNA | jetPRIME | Cloutier P. et al. (2020) J Proteome Res 19, 18-27 Upstream ORF-Encoded ASDURF Is a Novel Prefoldin-like Subunit of the PAQosome | More details |
Caco-2, HeLa, MDCK-II | in vitro | DNA | jetPRIME | Meyer Zu Schwabedissen, H. E. et al. (2018) Mol Pharmacol 94, 700-712 Thyroid Hormones Are Transport Substrates and Transcriptional Regulators of Organic Anion Transporting Polypeptide 2B1 | More details |
Huh7 | in vitro | DNA | jetPRIME | Nkongolo, S. et al. (2014) J Hepatol 60, 723-31 Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor | More details |
HEK-293 | in vitro | DNA | jetPRIME | Ahmad R. et al. (2020) Cell Mol Life Sci , GPR50-Ctail cleavage and nuclear translocation: a new signal transduction mode for G protein-coupled receptors | More details |
HEK-293T | in vitro | DNA | jetPRIME | Liu, S. et al. (2018) Elife 7, Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length | More details |
HCT 116, MCF7 | in vitro | DNA | jetPRIME | Skarydova, L. et al. (2014) J Steroid Biochem Mol Biol 143, 250-8 Isoquinoline alkaloids as a novel type of AKR1C3 inhibitors | More details |
HEK-293 | in vitro | DNA | jetPRIME | David RYS. et al. (2019) Immunology 12, 3993 LGP2 binds to PACT to regulate RIG-I– and MDA5-mediated antiviral responses | More details |
HEK-293, HeLa, QT6 | in vitro | DNA | jetPRIME | Laude, H. C. et al. (2018) Oncotarget , The rabbit as an orthologous small animal model for APOBEC3A oncogenesis. | More details |
HEK-293 | in vitro | antimiR, mimic miRNA and DNA cotransfection | jetPRIME | Wu, C. et al. (2014) J Immunol 193, 3036-44 IFN-gamma primes macrophage activation by increasing phosphatase and tensin homolog via downregulation of miR-3473b | More details |
HCT 116, HT-29, RKO, SW480 | in vitro | DNA | jetPRIME | Huang S. et al. (2020) Cancer Med , PAK5 facilitates the proliferation, invasion and migration in colorectal cancer cells | More details |