Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Keum, Y. S., Kim, H. G., Bode, A. M., Surh, Y. J., Dong, Z.
  • Year: 2013
  • Journal: Oncogene 32 444-52
  • Applications: in vitro / shRNA plasmid / jetPEI
  • Cell type: HEK-293T
    Description: Human embryonic kidney Fibroblast
    Known as: HEK293T, 293T

Method

Virus production (lentivirus).

Abstract

Cyclooxygenase-2 (COX-2) is an inducible enzyme that contributes to the generation of chronic inflammation in response to chemical carcinogens and environmental stresses, including ultraviolet B (UVB) irradiation. Although post-translational histone modifications are believed to have an important role in modulating transcriptional regulation of UVB-induced COX-2, the underlying biochemical mechanisms are completely unknown. Here, we show that UVB activates the p38 MAPK/MSK1 kinase cascade to phosphorylate histone H3 at Ser10 and Ser28, contributing to UVB-induced COX-2 expression. UVB has no effect on the global tri-methylation level of histone H3 (H3K4me3, H3K9me3, and H3K27me3). We observed that selected mammalian 14-3-3 proteins bind to UVB-induced phosphorylated histone H3 (Ser10 and Ser28). In particular, 14-3-3varepsilon is critical for recruiting MSK1 and Cdk9 to the chromatin and subsequently phosphorylating the C-terminal domain of RNA polymerase II in the cox-2 promoter. We propose that histone H3 phosphorylation at Ser10 and Ser28 serve as critical switches to promote cox-2 gene expression by facilitating the recruitment of MSK1 and Cdk9 to the cox-2 promoter, thereby promoting RNA polymerase II phosphorylation.

Go to