Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Weidenfeld-Baranboim, K., Bitton-Worms, K., Aronheim, A.
  • Year: 2008
  • Journal: Nucleic Acids Res 36 3608-19
  • Applications: in vitro / DNA / jetPEI
  • Cell type: NIH/3T3
    Description: Murine embryonic fibroblasts
    Known as: NIH/3T3, 3T3

Abstract

The c-Jun dimerization protein 2, JDP2, is a member of the activating protein 1 (AP-1) family of transcription factors. Overexpression of JDP2 has been shown to result in repression of AP-1-dependent transcription and inhibition of cellular transformation. Other studies suggested that JDP2 may function as an oncogene. Here we describe the identification of CHOP10, a member of the CCAAT enhancer binding proteins, as a protein associating with JDP2. In contrast to the inhibition of transcription by JDP2, JDP2-CHOP complex strongly enhances transcription from promoters containing TPA response elements (TRE), but not from those containing cyclic AMP response elements (CRE). The association between JDP2 and CHOP10 involves the leucine zipper motifs of both proteins, whereas, the basic domain of CHOP10 contributes to the association of the JDP2-CHOP10 complex with the DNA. DNA binding of JDP2-CHOP complex is observed both in vitro and in vivo. Finally, overexpression of JDP2 results in increased cell viability following ER stress and counteracts CHOP10 pro-apoptotic activity. JDP2 expression may determine the threshold for cell sensitivity to ER stress. This is the first report describing TRE-dependent activation of transcription by JDP2 and thus may provide an explanation for the as yet unexplored oncogenic properties of JDP2.

Go to