Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Stockinger, L. W., Eide, K. B., Dybvik, A. I., Sletta, H., Varum, K. M., Eijsink, V. G., Tondervik, A., Sorlie, M.
  • Year: 2015
  • Journal: Biochim Biophys Acta 1854 1494-501
  • Applications: in vitro / DNA / PEIpro
  • Cell type: HEK-293 6E
    Description: Human embryonic kidney Fibroblast cell line genetically modified with a truncated version of EBNA1 which grows in suspension and chemically defined serum-free medium.

Method

Two DNA plasmids were transfected into HEK-293-6E grown in F17 medium supplemented with Kolliphor P188 (0.1%). Transfection was performed with PEIpro when the cell density in the cultures was 1.7 x 10^6 cells/mL. 48 h after transfection, tryptone N1 feeding medium was added to a final concentration of 0.5% and harvesting of the protein was performed 96h after transfection.

Abstract

Human chitotriosidase (HCHT) is one of two active glycoside hydrolase family 18 chitinases produced by humans. The enzyme is associated with several diseases and is thought to play a role in the anti-parasite responses of the innate immune system. HCHT occurs in two isoforms, one 50 kDa (HCHT50) and one 39 kDa variant (HCHT39). Common for both isoforms is a catalytic domain with the (beta/alpha)8 TIM barrel fold. HCHT50 has an additional linker-region, followed by a C-terminal carbohydrate-binding module (CBM) classified as CBM family 14 in the CAZy database. To gain further insight into enzyme functionality and especially the effect of the CBM, we expressed both isoforms and compared their catalytic properties on chitin and high molecular weight chitosans. HCHT50 degrades chitin faster than HCHT39 and much more efficiently. Interestingly, both HCHT50 and HCHT39 show biphasic kinetics on chitosan degradation where HCHT50 is faster initially and HCHT39 is faster in the second phase. Moreover, HCHT50 produces distinctly different oligomer distributions than HCHT39. This is likely due to increased transglycosylation activity for HCHT50 due the CBM extending the positive subsites binding surface and therefore promoting transglycosylation. Finally, studies with both chitin and chitosan showed that both isoforms have a similarly low degree of processivity. Combining functional and structural features of the two isoforms, it seems that HCHT combines features of exo-processive and endo-nonprocessive chitinases with the somewhat unusual CBM14 to reach a high degree of efficiency, in line with its alleged physiological task of being a "complete" chitinolytic machinery by itself.

Go to