Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Gerster, K., Shi, W., Ng, B., Yue, S., Ito, E., Waldron, J., Gilbert, R., Liu, F. F.
  • Year: 2010
  • Journal: Int J Radiat Oncol Biol Phys 77 253-60
  • Applications: in vivo / siRNA / in vivo-jetPEI

Method

5x106 FaDu cells were injected intramuscularly into the left gastronecmius of immunodeficient Balb/c female mice. siRNA complexed with in vivo-jetPEI (N/P ratio of 8) were then injected IV or IP at day 1, 3, 5, 8, 10 and 12. Tumors were then measured.

Abstract

PURPOSE: To investigate the efficacy of targeting polo-like kinase 1 (Plk1) combined with ionizing radiotherapy (RT) for head-and-neck squamous cell carcinoma (HNSCC). METHODS AND MATERIALS: Polo-like kinase 1 messenger ribonucleic acid (mRNA) was targeted by small interfering RNA (siRNA) transfection into the FaDu HNSCC cell line; reduction was confirmed using quantitative real-time polymerase chain reaction. The cellular effects were assessed using [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium], clonogenic, flow cytometric, and caspase assays. In vivo efficacy of siPlk1 was evaluated using mouse xenograft models. RESULTS: Small interfering Plk1 significantly decreased Plk1 mRNA expression, while also increasing cyclin B1 and p21(Waf1/CIP1) mRNA levels after 24 h. This depletion resulted in a time-dependent increase in FaDu cytotoxicity, which was enhanced by the addition of RT. Flow cytometric and caspase assays demonstrated progressive apoptosis, DNA double-strand breaks (gamma-H2AX), G2/M arrest, and activation of caspases 3 and 7. Implantation of siPlk1-treated FaDu cells in severe combined immunodeficient mice delayed tumor formation, and systemic administration of siPlk1 inhibited tumor growth enhanced by RT. CONCLUSIONS: These data demonstrate the suitability of Plk1 as a potential therapeutic target for HNSCC, because Plk1 depletion resulted in significant cytotoxicity in vitro and abrogated tumor-forming potential in vivo. The effects of Plk1 depletion were enhanced with the addition of RT, indicating that Plk1 represents an important potential radiation sensitizer for HNSCC.

Go to