Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Malacaria, E., Franchitto, A., Pichierri, P.
  • Year: 2017
  • Journal: Sci Rep 7 44464
  • Applications: in vitro / siRNA / INTERFERin
  • Cell types:
    1. Name: GM01604
      Description: human hTERT-immortalised fibroblasts
    2. Name: OE-E6/E7
      Description: Human oviductal epithelial cells (OE)
      Known as: OE

Abstract

SLX4 is a versatile protein serving as docking for multiple structure-specific endonucleases during DNA repair, however, little is known about its function at demised replication forks. Using RNAi or FA-P cells complemented with SLX4 mutants that abrogate interaction with MUS81 or SLX1, we show that SLX4 cooperates with MUS81 to introduce DSBs after replication stress but also counteracts pathological targeting of demised forks by GEN1. Such unexpected function of SLX4 is unrelated to interaction with endonucleases, but concerns the physical presence of the protein. Strikingly, ectopic expression of the Holliday junction-binding protein RuvA inhibits DSBs in SLX4-deficient cells by preventing GEN1 chromatin-association, and rescues proliferation and genome integrity upon replication stress. Altogether, our results indicate that SLX4 is crucial to prevent accidental processing of Holliday junction-like intermediates at demised forks also suggesting that spontaneous genome instability in FA-P cells may derive, at least partially, from unscheduled action of GEN1 in S-phase.

Go to