• Authors: Feng, J., Yang, J., Zheng, S., Qiu, Y., Chai, C.
  • Year: 2011
  • Journal: PLoS ONE 6 e23655
  • Applications: in vivo / siRNA / in vivo-jetPEI


In the first 6 h of life after birth, pups underwent intraperitoneal injection of transfection mixture consisting of siRNA (3 nmoles) dissolved in 6 µl of in vivo-jetPEI with the N/P ratio of 6 according to the instruction. Six hours later, all pups were injected with 50 µl of RRV supernatant. After RRV infection, all pups were monitored for 14 days. On 7 dpi, half of the pups in each group were sacrificed, and their bile ducts were used for mRNA and protein detection. The rest were euthanized on 14 dpi, and their extrahepatic bile ducts and livers were harvested.


Biliary atresia is a common disease in neonates which causes obstructive jaundice and progressive hepatic fibrosis. Our previous studies indicate that rotavirus infection is an initiator in the pathogenesis of experimental biliary atresia (BA) through the induction of increased nuclear factor-kappaB and abnormal activation of the osteopontin inflammation pathway. In the setting of rotavirus infection, rotavirus nonstructural protein 4 (NSP4) serves as an important immunogen, viral protein 7 (VP7) is necessary in rotavirus maturity and viral protein 4 (VP4) is a virulence determiner. The purpose of the current study is to clarify the roles of NSP4, VP7 and VP4 in the pathogenesis of experimental BA. Primary cultured extrahepatic biliary epithelia were infected with Rotavirus (mmu18006). Small interfering RNA targeting NSP4, VP7 or VP4 was transfected before rotavirus infection both in vitro and in vivo. We analyzed the incidence of BA, morphological change, morphogenesis of viral particles and viral mRNA and protein expression. The in vitro experiments showed NSP4 silencing decreased the levels of VP7 and VP4, reduced viral particles and decreased cytopathic effect. NSP4-positive cells had strongly positive expression of integrin subunit alpha2. Silencing of VP7 or VP4 partially decreased epithelial injury. Animal experiments indicated after NSP4 silencing, mouse pups had lower incidence of BA than after VP7 or VP4 silencing. However, 33.3% of VP4-silenced pups (N = 6) suffered BA and 50% of pups (N = 6) suffered biliary injury after VP7 silencing. Hepatic injury was decreased after NSP4 or VP4 silencing. Neither VP4 nor VP7 were detected in the biliary ducts after NSP4. All together, NSP4 silencing down-regulates VP7 and VP4, resulting in decreased incidence of BA.