Citation

  • Authors: Lin, Y. H., Chang, K. Y.
  • Year: 2016
  • Journal: Nucleic Acids Res 44 9005-9015
  • Applications: in vitro / DNA / jetPRIME
  • Cell type: HEK-293T
    Description: Human embryonic kidney Fibroblast
    Known as: HEK293T, 293T

Abstract

Metabolite-responsive RNA pseudoknots derived from prokaryotic riboswitches have been shown to stimulate -1 programmed ribosomal frameshifting (PRF), suggesting -1 PRF as a promising gene expression platform to extend riboswitch applications in higher eukaryotes. However, its general application has been hampered by difficulty in identifying a specific ligand-responsive pseudoknot that also functions as a ligand-dependent -1 PRF stimulator. We addressed this problem by using the -1 PRF stimulation pseudoknot of SARS-CoV (SARS-PK) to build a ligand-dependent -1 PRF stimulator. In particular, the extra stem of SARS-PK was replaced by an RNA aptamer of theophylline and designed to couple theophylline binding with the stimulation of -1 PRF. Conformational and functional analyses indicate that the engineered theophylline-responsive RNA functions as a mammalian riboswitch with robust theophylline-dependent -1 PRF stimulation activity in a stable human 293T cell-line. Thus, RNA-ligand interaction repertoire provided by in vitro selection becomes accessible to ligand-specific -1 PRF stimulator engineering using SARS-PK as the scaffold for synthetic biology application.

Go to