Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Zhao, W., Pferdehirt, L., Segatori, L.
  • Year: 2018
  • Journal: ACS Synth Biol 7 540-552
  • Applications: in vitro / DNA / jetPRIME
  • Cell type: HEK-293T
    Description: Human embryonic kidney Fibroblast
    Known as: HEK293T, 293T

Abstract

Protein function is typically studied and engineered by modulating protein levels within the complex cellular environment. To achieve fast, targeted, and predictable control of cellular protein levels without genetic manipulation of the target, we developed a technology for post-translational depletion based on a bifunctional molecule (NanoDeg) consisting of the antigen-binding fragment from the Camelidae species heavy-chain antibody (nanobody) fused to a degron signal that mediates degradation through the proteasome. We provide proof-of-principle demonstration of targeted degradation using a nanobody against the green fluorescent protein (GFP). Guided by predictive modeling, we show that customizing the NanoDeg rate of synthesis, rate of degradation, and mode of degradation enables quantitative and predictable control over the target's levels. Integrating the GFP-specific NanoDeg within a genetic circuit based on stimulus-dependent GFP output results in enhanced dynamic range and resolution of the output signal. By providing predictable control over cellular proteins' levels, the NanoDeg system could be readily used for a variety of systems-level analyses of cellular protein function.

Go to