• Authors: Kumar, A., Marques, M., Carrera, A. C.
  • Year: 2006
  • Journal: Mol Cell Biol 26 9116-25
  • Applications: in vitro / DNA / jetPEI
  • Cell type: Phoenix
    Description: Human embryonic kidney Fibroblast transformed with adenovirus E1a. Available through Orbigen.


Phosphoinositide 3-kinase (PI3K) is one of the early-signaling molecules induced by growth factor (GF) receptor stimulation that are necessary for cell growth and cell cycle entry. PI3K activation occurs at two distinct time points during G(1) phase. The first peak is observed immediately following GF addition and the second in late G(1), before S phase entry. This second activity peak is essential for transition from G(1) to S phase; nonetheless, the mechanism by which this peak is induced and regulates S phase entry is poorly understood. Here, we show that activation of Ras and Tyr kinases is required for late-G(1) PI3K activation. Inhibition of late-G(1) PI3K activity results in low c-Myc and cyclin A expression, impaired Cdk2 activity, and reduced loading of MCM2 (minichromosome maintenance protein) onto chromatin. The primary consequence of inhibiting late-G(1) PI3K was c-Myc destabilization, as conditional activation of c-Myc in advanced G(1) as well as expression of a stable c-Myc mutant rescued all of these defects, restoring S phase entry. These results show that Tyr kinases and Ras cooperate to induce the second PI3K activity peak in G(1), which mediates initiation of DNA synthesis by inducing c-Myc stabilization.