Citation

  • Authors: Soller, M., Tautenhahn, A., Brune, B., Zacharowski, K., John, S., Link, H., von Knethen, A.
  • Year: 2006
  • Journal: J Leukoc Biol 79 235-43
  • Applications: in vitro / DNA / jetPEI
  • Cell type: Jurkat
    Description: Human acute T cell leukemia line

Abstract

In the last two decades, extensive research failed to significantly improve the outcome of patients with sepsis. In part, this drawback is based on a gap in our knowledge about molecular mechanisms understanding the pathogenesis of sepsis. During sepsis, T cells are usually depleted. Recent studies in mice and human cells suggested a role of the peroxisome proliferator-activated receptor gamma (PPARgamma) in provoking apoptosis in activated T lymphocytes. Therefore, we studied whether expression/activation of PPARgamma might contribute to T cell death during sepsis. We observed PPARgamma up-regulation in T cells of septic patients. In contrast to controls, PPARgamma expressing cells from septic patients responded with apoptosis when exposed to PPARgamma agonists. Cell demise was attenuated by SR-202, a synthetic PPARgamma antagonist, and specificity was further verified by excluding a proapoptotic response to a PPARalpha agonist. We propose that up-regulation of PPARgamma sensitizes T cells of septic patients to undergo apoptosis. PPARgamma activation in T cells requires an exogenous PPARgamma agonist, which we identified in sera of septic patients. Septic sera were used to study reporter gene expression containing a PPAR-responsive element. We conclude that PPARgamma plays a significant role in T cell apoptosis, contributing to lymphocyte loss in sepsis. Thus, inhibition of PPARgamma may turn out to be beneficial for patients suffering from lymphopenia during sepsis.

Pubmed