Citation

  • Authors: Niopek, D., Wehler, P., Roensch, J., Eils, R., Di Ventura, B.
  • Year: 2016
  • Journal: Nat Commun 7 10624
  • Applications: in vitro / DNA / jetPRIME
  • Cell types:
    1. Name: HEK-293T
      Description: Human embryonic kidney Fibroblast
      Known as: HEK293T, 293T
    2. Name: HeLa
      Description: Human cervix epitheloid carcinoma cells
    3. Name: Hepa 1-6
      Description: Mouse hepatocellular carcinoma cells

Abstract

Active nucleocytoplasmic transport is a key mechanism underlying protein regulation in eukaryotes. While nuclear protein import can be controlled in space and time with a portfolio of optogenetic tools, protein export has not been tackled so far. Here we present a light-inducible nuclear export system (LEXY) based on a single, genetically encoded tag, which enables precise spatiotemporal control over the export of tagged proteins. A constitutively nuclear, chromatin-anchored LEXY variant expands the method towards light inhibition of endogenous protein export by sequestering cellular CRM1 receptors. We showcase the utility of LEXY for cell biology applications by regulating a synthetic repressor as well as human p53 transcriptional activity with light. LEXY is a powerful addition to the optogenetic toolbox, allowing various novel applications in synthetic and cell biology.

Go to