Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Arnaoty, A., Pitard, B., Bateau, B., Bigot, Y., Lecomte, T.
  • Year: 2012
  • Journal: Methods Mol Biol 859 293-305
  • Applications: in vitro / DNA / jetPEI
  • Cell type: HeLa
    Description: Human cervix epitheloid carcinoma cells

Abstract

Molecular domestication of several DNA transposons has occurred during the evolution of the primate lineage, and has led to the emergence of at least 42 new genes known as neogenes. Because these genes are derived from transposons, they encode proteins that are related to certain recombinases, known as transposases. Consequently, they may make an important contribution to the genetic instability of some human cells. In order to investigate the role of these neogenes, we need to be able to study their expression as proteins, for example in tumours, which often provide good models of genetic instability. In order to perform such studies, polyclonal antibodies directed against the proteins expressed by neogenes are obtained using a recently developed new method of Nanospheres/DNA immunisation in laboratory mammals. In this chapter, we describe a fully integrated process of producing antibodies that consists of a series of steps starting with the preparation and synthetic formulation of plasmids encoding neogenes, and culminating in the final production and confirmation of the quality of these polyclonal antibodies.

Go to