Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Guo, L., Kong, Q., Dong, Z., Dong, W., Fu, X., Su, L., Tan, X.
  • Year: 2017
  • Journal: Int J Mol Med 40 898-906
  • Applications: in vitro / DNA / jetPEI-Macrophage
  • Cell type: RAW 264.7
    Description: Mouse monocytes/macrophages
    Known as: RAW

Abstract

Pseudomonas aeruginosa (PA)-induced keratitis is one of the most common and destructive bacterial diseases. The pathogenesis of PA infections is closely associated with excessive inflammatory responses. Nucleotide oligomerization domain (NOD)-like receptor (NLR) family with caspase activation and recruitment domain (CARD) containing 3 (NLRC3) protein has been implicated as a negative regulator of inflammation and antiviral response, but the role of NLRC3 in PA-induced keratitis has not been described. In the present study, we investigated the effects of NLRC3 in PA-induced keratitis and explored the underlying mechanism. We found that the expression of NLRC3 was decreased in mouse corneas and macrophages after PA infection. Overexpr-ession of NLRC3 significantly attenuated disease progression, inhibited the activation of nuclear factor-kappaB signaling and decreased the production of pro-inflammatory cytokines after PA infection. Furthermore, overexpression of NLRC3 promoted K48-linked polyubiquitination and degradation of interleukin-1 receptor-associated kinase 1 (IRAK1). Taken together, we demonstrated that NLRC3 has an anti-inflammatory effect on PA-induced keratitis, which may provide an improved understanding of host resistance to PA infection.

Go to