Citation

  • Authors: Naveed, S. U., Clements, D., Jackson, D. J., Philp, C., Billington, C. K., Soomro, I., Reynolds, C., Harrison, T. W., Johnston, S. L., Shaw, D. E., Johnson, S. R.
  • Year: 2016
  • Journal: Am J Respir Crit Care Med
  • Applications: in vitro / siRNA / INTERFERin
  • Cell type: Human airway smooth muscle cells
    Description: Human Bronchial Smooth Muscle Cells

Method

Cells were seeded at 50% of confluence and serum-starved for 24 h before their transfection with 1 nM siRNA using INTERFERin.

Abstract

INTRODUCTION: Matrix metalloproteinase-1 and mast cells are present in the airways of people with asthma. We hypothesised that matrix metalloproteinase-1 could be activated by mast cells and increase asthma severity. METHODS: Patients with stable asthma and healthy controls underwent spirometry, methacholine challenge, bronchoscopy and their airway smooth muscle cells were grown in culture. A second asthma group and controls had symptom scores, spirometry and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extra-cellular matrix was prepared from decellularised airway smooth muscle cultures. Matrix metalloproteinase-1 protein and activity were assessed. RESULTS: Airway smooth muscle cells generated pro-matrix metalloproteinase-1 which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extra-cellular matrix which enhanced subsequent airway smooth muscle growth by 1.5 fold (p<0.05) which was dependent on matrix metalloproteinase-1 activation. In asthma, airway pro-matrix metalloproteinase-1 was 5.4 fold higher than control subjects (p=0.002). Mast cell numbers were associated with airway smooth muscle proliferation and matrix metalloproteinase-1 protein associated with bronchial hyper-responsiveness. During exacerbations, matrix metalloproteinase-1 activity increased and was associated with fall in FEV1 and worsening asthma symptoms. CONCLUSIONS: Matrix metalloproteinase-1 is activated by mast cell tryptase resulting in a pro-proliferative extra-cellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, matrix metalloproteinase-1 levels are associated with bronchial hyper-responsiveness and matrix metalloproteinase-1 activation with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing matrix metalloproteinase activation, airway smooth muscle growth and airway responsiveness.

Go to