Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Xu B. et al.
  • Year: 2022
  • Journal: Adv Sci 9 e2204697
  • Applications: in vivo / siRNA / in vivo-jetPEI

Method

In Vivo siRNA Delivery: The in vivo-jetPEI (Polyplus Inc.) was used for siRNA delivery according to the manufacturer’s instructions. To address whether kyat2 upregulation was causally linked to liver NAD decline and lipid peroxidation, cationic liposome encapsulated short interfering RNAs (siRNAs) targeting mouse Kyat2 (siKyat2) were injected intravenously into the mice and hepatic IR was performed 48 h later (Figure S5A, Supporting Information). Kyat2 knockdown in the ischemic livers was confirmed by immunoblotting, with >50% decrease in protein expression compared to ctrl siRNA (siCtrl)

Abstract

Hepatic ischemia-reperfusion (IR) injury remains a common issue lacking effective strategy and validated pharmacological targets. Here, using an unbiased metabolomics screen, this study finds that following murine hepatic IR, liver 3-hydroxyanthranilic acid (3-HAA) and quinolinic acid (QA) decline while kynurenine and kynurenic acid (KYNA) increase. Kynurenine aminotransferases 2, functioning at the key branching point of the kynurenine pathway (KP), is markedly upregulated in hepatocytes during ischemia, shifting the kynurenine metabolic route from 3-HAA and QA to KYNA synthesis. Defects in QA synthesis impair de novo nicotinamide adenine dinucleotide (NAD) biosynthesis, rendering the hepatocytes relying on the salvage pathway for maintenance of NAD and cellular antioxidant defense. Blocking the salvage pathway following IR by the nicotinamide phosphoribosyltransferase inhibitor FK866 exacerbates liver oxidative damage and enhanced IR susceptibility, which can be rescued by the lipid peroxidation inhibitor Liproxstatin-1. Notably, nicotinamide mononucleotide administration once following IR effectively boosts NAD and attenuated IR-induced oxidative stress, inflammation, and cell death in the murine model. Collectively, the findings reveal that metabolic rewiring of the KP partitions it away from NAD synthesis in hepatic IR pathophysiology, and provide proof of concept that NAD augmentation is a promising therapeutic measure for IR-induced liver injury.

Go to