Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Boe, S. L., Hovig, E.
  • Year: 2013
  • Journal: Methods Mol Biol 969 89-100
  • Applications: in vitro / mRNA / jetPEI
  • Cell type: OHS
    Description: Human osteosarcoma
    Known as: OHSX ; OHS/X ; OHS-50

Abstract

mRNA-based transfection is an attractive strategy for manipulation of gene expression for gain-of-function studies and therapeutic applications. As a potential therapeutic regulator, mRNA transfection has mainly been hampered by poor delivery strategies, combined with lack of specific targeting to the intended tissue(s) or cells. In this chapter, we describe a protocol for light-induced mRNA transfection into human cancer cell lines with the benefit for time- and site-specific mRNA targeting. Light-induced mRNA transfection is achieved by delivering mRNA molecules into endosomal and lysosomal vesicles. Subsequently, a photosensitizer (PS) localized in the membranes of these vesicles is used to induce damage, resulting in release of mRNA molecules into the cytosol. The main benefit of the strategy proposed is the possibility for protein production from the delivered mRNA in a way that is controllable in a time- and site-specific manner.

Go to