Citation

  • Authors: Hwang, H. J., Kim, J. W., Chung, H. S., Seo, J. A., Kim, S. G., Kim, N. H., Choi, K. M., Baik, S. H., Yoo, H. J.
  • Year: 2018
  • Journal: Mediators Inflamm 2018 6209140
  • Applications: in vivo / siRNA / in vivo-jetPEI

Method

Five-week-old male C57BL/6 mice were randomly divided into the following 4 groups: scramble siRNA treatment, scramble siRNA plus LPS (50 μg per mouse) treatment, sesn2-targeting siRNA (60 μg per mouse) plus LPS treatment, and sesn2-targeting siRNA plus LPS with AICAR(AMPK activator; 12.5 mg per mouse). Sesn2-targeting siRNA was delivered into heart tissue using in vivo-jetPEI.

Abstract

Sestrin2 (sesn2) is an endogenous antioxidant protein that has recently gained attention for its potential to treat various inflammatory diseases. However, the relationship of sesn2 with cardiomyopathy is still unclear. In H9c2 cells, sesn2 knockdown reduced the level of 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, downregulated antioxidant genes including catalase and superoxide dismutase (SOD2), and increased reactive oxygen species (ROS) production upon lipopolysaccharide (LPS) treatment. LPS-mediated cell death and the expression of matrix metalloproteinase (MMP) 2 and MMP9 were significantly increased by sesn2 knockdown. However, these increases were prevented by treatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator. Consistent with the in vitro results, AMPK phosphorylation was decreased in heart tissue from sesn2 knockdown mice compared to heart tissue from control C57BL/6 mice, which was associated with decreased expression of antioxidant genes and increased LPS-mediated cell death signaling. Furthermore, the decrease in AMPK phosphorylation caused by sesn2 knockdown increased LPS-mediated expression of cardiac fibrotic factors, including collagen type I and type III, in addition to MMP2 and MMP9, in heart tissue from C57BL/6 mice. These results suggest that sesn2 is a novel potential therapeutic target for cardiomyopathy under inflammatory conditions.

Go to