Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: D'Oto A. et al.
  • Year: 2021
  • Journal: Nat Commun 12 7204
  • Applications: in vitro / DNA / PEIpro
  • Cell type: HEK-293T
    Description: Human embryonic kidney Fibroblast
    Known as: HEK293T, 293T

Method

Plasmids were maxipreped by using NucleoBond Xtra EF kits according to manufacturer’s protocol. Lentivirus was produced by transient transfection of PEI-pro DNA complex (6 µg of TLCV2-RB1, 3 µg of 1-1r, 1 µg RTR, 1 µg of VSVg with 22 µl of PEI pro in 400 µl of DMEM medium) with 5 × 106 HEK293T cells in 10 ml complete medium (DMEM, 100 U/mL penicillin/streptomycin, 1× L-glutamine and 10% FBS) in a 10 cm dish. Virus supernatant was collected every 8–12 h for 3 days, which were passed through a 0.45 μm filter and concentrated by ultracentrifuge at 50,000g for 1.5 h at 4 °C

Abstract

The H3K27me2/me3 histone demethylase KDM6B is essential to neuroblastoma cell survival. However, the mechanism of KDM6B action remains poorly defined. We demonstrate that inhibition of KDM6B activity 1) reduces the chromatin accessibility of E2F target genes and MYCN, 2) selectively leads to an increase of H3K27me3 but a decrease of the enhancer mark H3K4me1 at the CTCF and BORIS binding sites, which may, consequently, disrupt the long-range chromatin interaction of MYCN and E2F target genes, and 3) phenocopies the transcriptome induced by the specific CDK4/6 inhibitor palbociclib. Overexpression of CDK4/6 or Rb1 knockout confers neuroblastoma cell resistance to both palbociclib and the KDM6 inhibitor GSK-J4. These data indicate that KDM6B promotes an oncogenic CDK4/6-pRB-E2F pathway in neuroblastoma cells via H3K27me3-dependent enhancer-promoter interactions, providing a rationale to target KDM6B for high-risk neuroblastoma.

Go to