Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Bashari, D., Hacohen, D., Ginsberg, D.
  • Year: 2011
  • Journal: Cell Signal 23 65-70
  • Applications: in vitro / siRNA / INTERFERin
  • Cell type: U-2 OS
    Description: Human bone osteosarcoma
    Known as: U2OS

Abstract

Members of the E2F transcription factor family are critical downstream targets of the tumor suppressor RB and are often deregulated and hyperactive in human tumors. E2F regulates a diverse array of cellular functions including cell proliferation and apoptosis. Recent studies indicate that E2F also regulates expression of upstream components of pivotal signal transduction pathways, thereby modulating the activity of these pathways. We show here that E2F modulates the activity of the JNK pathway via E2F-induced upregulation of JNK phosphorylation. Accordingly, downregulating E2F1and E2F3 inhibits sustained UV-induced JNK phosphorylation and ectopic expression of E2F1 or E2F3 induces JNK phosphorylation and activation. The mechanism by which E2F modulates JNK phosphorylation involves transcriptional induction of the kinase GCK, a MAP4K that can activate JNK indirectly. Hence, inhibition of GCK expression impairs E2F1-induced JNK phosphorylation. The JNK pathway is an important mediator of stress-induced apoptosis and we show here that inhibition of JNK expression or activity significantly hinders E2F1-induced apoptosis. Overall, our data identify the kinase GCK as a novel E2F-regulated gene and reveal a functional link between a central signaling pathway, namely the JNK pathway, and the transcription factor E2F.

Go to