Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Shang, H., Hao, Z. Q., Fu, X. B., Hua, X. D., Ma, Z. H., Ai, F. L., Feng, Z. Q., Wang, K., Li, W. X., Li, B.
  • Year: 2018
  • Journal: Oncol Lett 15 5966-5970
  • Applications: in vitro / DNA / jetPEI
  • Cell type: Hep G2
    Description: Human hepatocarcinoma cells

Abstract

The proliferative activity of hepatic carcinoma cells is directly associated with tumorigenesis, tumor development, metastasis and invasion. A variety of cytokines and peptides serve important roles in the development of hepatic carcinoma. The aim of the present study was to examine the effect of intermedin (IMD) on hepatic carcinoma cell proliferation and its mechanism of action. HepG2 hepatic carcinoma cell lines were treated with human recombinant IMD1-53 and its receptor antagonist IMD17-47. Cell proliferation was detected using a Cell Counting kit-8. The activation of the classical Wnt signaling pathway was demonstrated by the ratio of TOPflash:FOPflash luciferase activity. The expression of c-Myc and cyclin D1 downstream of the Wnt signaling pathway were detected using reverse transcription-quantitative polymerase chain reaction analysis. It was demonstrated that IMD may promote the proliferation of HepG2 cells in a time-dependent manner, and that the IMD receptor antagonist IMD17-47 could eliminate this promotion. IMD may activate classical Wnt signaling pathway transcriptional activity and the mRNA levels of certain downstream target genes. Furthermore, blocking of the Wnt signaling pathway may inhibit IMD-induced HepG2 cell proliferation to a certain extent. IMD may promote hepatic carcinoma cell proliferation by binding with receptor antagonist IMD17-47 and activating the Wnt signaling cascade, thus providing a novel avenue for the treatment of hepatic carcinoma.

Go to