Citation

  • Authors: Frye, M., Dierkes, M., Kuppers, V., Vockel, M., Tomm, J., Zeuschner, D., Rossaint, J., Zarbock, A., Koh, G. Y., Peters, K., Nottebaum, A. F., Vestweber, D.
  • Year: 2015
  • Journal: J Exp Med 212 2267-87
  • Applications: in vivo / siRNA / in vivo-jetPEI

Method

60 µg siRNA were injected into mouse through intravenous injection to target lungs. Analysis was performed 48h after transfection.

Abstract

Vascular endothelial (VE)-protein tyrosine phosphatase (PTP) associates with VE-cadherin, thereby supporting its adhesive activity and endothelial junction integrity. VE-PTP also associates with Tie-2, dampening the tyrosine kinase activity of this receptor that can support stabilization of endothelial junctions. Here, we have analyzed how interference with VE-PTP affects the stability of endothelial junctions in vivo. Blocking VE-PTP by antibodies, a specific pharmacological inhibitor (AKB-9778), and gene ablation counteracted vascular leak induction by inflammatory mediators. In addition, leukocyte transmigration through the endothelial barrier was attenuated. Interference with Tie-2 expression in vivo reversed junction-stabilizing effects of AKB-9778 into junction-destabilizing effects. Furthermore, lack of Tie-2 was sufficient to weaken the vessel barrier. Mechanistically, inhibition of VE-PTP stabilized endothelial junctions via Tie-2, which triggered activation of Rap1, which then caused the dissolution of radial stress fibers via Rac1 and suppression of nonmuscle myosin II. Remarkably, VE-cadherin gene ablation did not abolish the junction-stabilizing effect of the VE-PTP inhibitor. Collectively, we conclude that inhibition of VE-PTP stabilizes challenged endothelial junctions in vivo via Tie-2 by a VE-cadherin-independent mechanism. In the absence of Tie-2, however, VE-PTP inhibition destabilizes endothelial barrier integrity in agreement with the VE-cadherin-supportive effect of VE-PTP.

Go to