• Authors: Furusawa, Y., Fujiwara, Y., Hassan, M. A., Tabuchi, Y., Morita, A., Enomoto, A., Kondo, T.
  • Year: 2012
  • Journal: Cancer Lett 322 107-12
  • Applications: in vitro / siRNA / INTERFERin
  • Cell type: Molt-4
    Description: Human acute T cell leukemia


100 nM


Ultrasound (US) has been shown to induce cell death in cancer cells; however, the underlying mechanism remains elusive. Here, we report a set of novel findings on the molecular mechanism. We found that Akt (also known as protein kinase B), a substrate of DNA-dependent protein kinase (DNA-PK), was phosphorylated in U937 cells nullified with p53 or Molt-4 cells artificially abrogated with p53 after US exposure. On the contrary, Akt phosphorylation was transiently down-regulated then recovered in Molt-4 cells harboring wild-type p53 in US-exposed cells, possibly due to a mutual regulation between p53 and Akt. Inhibition of ataxia-telangiectasia mutated (ATM) or DNA-PK revealed that DNA-PK, rather than ATM, was preferentially involved in Akt phosphorylation and cell survival after US-exposure in all cell lines. These results indicate that DNA-PK plays a protective role against US-induced cell death regardless of p53 phenotype. In conclusion, our findings provide the first delineation of the role of DNA-PK in US-induced cell death and suggest that targeting DNA-PK might be a promising strategy to augment cancer eradication by US.