Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Zhen, J., Yuan, J., Fu, Y., Zhu, R., Wang, M., Chang, H., Zhao, Y., Wang, D., Lu, Z.
  • Year: 2016
  • Journal: Mol Immunol 82 84-93
  • Applications: in vitro / DNA / jetPRIME
  • Cell type: Mouse primary oligodendrocytes
    Description: Primary mouse oligodendrocytes

Abstract

Multiple sclerosis (MS) is characterized by an increase in interleukin-22 and Fas, and a decrease in FOXP3, among other factors. In this study, we examined patients with MS and healthy control subjects and used the experimental autoimmune encephalomyelitis (EAE) animal model to identify the effects of IL-22 on oligodendrocytes and T cells in MS development. In MS, the expression of Fas in oligodendrocytes and IL-22 in CD4+CCR4+CCR6+CCR10+ T cells was enhanced. Ikaros and FOXP3 were both decreased in T cells. Depending on exogenous IL-22, Fas increased the phosphorylation of mitogen- and stress-activated protein kinase 1 and activated the nuclear factor-kappaB pathway in oligodendrocytes, leading to an increase in Fas and oligodendrocyte apoptosis. IL-22 decreased FOXP3 expression by activating NF-kappaB, and it further inhibited PTEN and Ikaros expression. Tregs reversed the functions of IL-22. Taken together, these findings help to elucidate the mechanisms of IL-22 in MS development.

Go to