Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Sakaguchi S. et al.
  • Year: 2020
  • Journal: Biochem Biophys Res Commun 530 617-623
  • Applications: in vitro / DNA, RNA / jetPRIME
  • Cell types:
    1. Name: BHK-21
      Description: Hamster Syrian Kidney Fibroblast
      Known as: BHK21, BHK 21
    2. Name: Huh7
      Description: Human hepatocarcinoma cells
      Known as: Huh7, Huh 7

Method

Transfection of five-prime-capped viral RNA CHIKV into BHK-21 cells for virus production

Abstract

cDNA expression cloning has been shown to be a powerful approach in the search for cellular factors that control virus replication. In this study, cDNA library screening using a pool of cDNA derived from interferon-treated human cells was combined with the MinION sequencer to identify cellular genes inhibiting Chikungunya virus (CHIKV) replication. Challenge infection of CHIKV to Vero cells transduced with the cDNA library produced virus-resistant cells. Then, the MinION sequence of cDNAs extracted from the surviving cells revealed that the open reading frames of TOM7, S100A16, N-terminally truncated form of ECI1 (ECI1ΔN59), and RPL29 were inserted in many of the cells. Importantly, the transient expression of TOM7, S100A16, and ECI1ΔN59 was found to inhibit the replication of CHIKV in Huh7 cells, indicating that these cellular factors were potentially anti-CHIKV molecules. Thus, our study demonstrated that cDNA expression cloning combined with the MinION sequencer allowed a rapid and comprehensive detection of cellular inhibitors against CHIKV.

Go to