Citation

  • Authors: Sato Y. et al.
  • Year: 2020
  • Journal: Biochim Biophys Acta Mol Basis Dis 1866 165898
  • Applications: in vitro / DNA / jetPRIME
  • Cell types:
    1. Name: alphaTC1
      Description: Mouse pancreatic adenoma alpha cells.
      Known as: alpha-TC1; alpha TC1; aTC1.
    2. Name: Plat-E
      Description: Retrovirus packaging cell line.
      Known as: 
      Platinum-E

Abstract

Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor required for normal insulin secretion and maintenance of β-cell number in the pancreas. HNF1α is also expressed in pancreatic α-cells, but its role in these cells is unknown. The aim of this study was to clarify the role of HNF1α in α-cells. Male Hnf1a+/- mice with a mixed background were backcrossed to outbred ICR mice. Glucose tolerance, glucagon and insulin secretion, islet histology, and gene expression were investigated in ICR Hnf1a-/- and Hnf1a+/+ mice. Regulation of Slc5a1 (encoding sodium glucose cotransporter 1 [SGLT1]) expression by HNF1α and the effect of SGLT1 inhibition on glucagon secretion were also explored. ICR Hnf1a-/- mice were glucose intolerant and exhibited impaired glucose-stimulated insulin secretion. The β-cell area of ICR mice was decreased in Hnf1a-/- mice, but the α-cell area in the pancreas was similar between Hnf1a-/- and Hnf1a+/+ mice. Hnf1a-/- mice showed higher fasting glucagon levels and exhibited inadequate suppression of glucagon after glucose load. In addition, glucagon release in response to hypoglycemia was impaired in Hnf1a-/- mice, and glucagon secretion after 1.1 mM glucose administration, was also decreased in Hnf1a-/- islets. Slc5a1 expression was decreased in Hnf1a-/- islets, while HNF1α activated the Slc5a1 promoter in αTC1-6 cells. Inhibition of SGLT1 suppressed 1.1 mM glucose-stimulated glucagon secretion in islets and αTC1-6 cells, but SGLT1 inhibition had no additional inhibitory effect in HNF1α-deficient cells. Our findings indicate that HNF1α modulates glucagon secretion in α-cells through the regulation of Slc5a1.

Pubmed