Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Arterbery, A. S., Bogue, C. W.
  • Year: 2016
  • Journal: PLoS One 11 e0146806
  • Applications: in vitro / siRNA / INTERFERin
  • Cell type: Mouse embryonic stem cells
    Description: Mouse stem cells derived from preimplantation-stage embryo. 
    Known as: mESCs

Method

Cells were transfected with INTERFERin according to the manufacturers instructions.

Abstract

Elucidating the molecular mechanisms involved in the differentiation of stem cells to hepatic cells is critical for both understanding normal developmental processes as well as for optimizing the generation of functional hepatic cells for therapy. We performed in vitro differentiation of mouse embryonic stem cells (mESCs) with a null mutation in the homeobox gene Hhex and show that Hhex(-/-) mESCs fail to differentiate from definitive endoderm (Sox17(+/)Foxa2(+)) to hepatic endoderm (Alb(+)/Dlk(+)). In addition, hepatic culture elicited a >7-fold increase in Vegfa mRNA expression in Hhex(-/-) cells compared to Hhex(+/+) cells. Furthermore, we identified VEGFR2(+)/ALB(+/)CD34(-) in early Hhex(+/+) hepatic cultures. These cells were absent in Hhex(-/-) cultures. Finally, through manipulation of Hhex and Vegfa expression, gain and loss of expression experiments revealed that Hhex shares an inverse relationship with the activity of the Vegf signaling pathway in supporting hepatic differentiation. In summary, our results suggest that Hhex represses Vegf signaling during hepatic differentiation of mouse ESCs allowing for cell-type autonomous regulation of Vegfr2 activity independent of endothelial cells.

Go to