Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Chockalingam K. et al.
  • Year: 2020
  • Journal: Sci Rep 10 2888
  • Applications: in vitro / DNA / FectoPRO, jetPRIME
  • Cell types:
    1. Name: CHO-K1
      Description: Chinese hamster ovary cells
    2. Name: HEK-293
      Description: Human embryonic kidney Fibroblast
      Known as: HEK293, 293

Abstract

Fabs offer an attractive platform for monoclonal antibody discovery/engineering, but library construction can be cumbersome. We report a simple method - Golden Gate assembly with a bi-directional promoter (GBid) - for constructing phage display Fab libraries. In GBid, the constant domains of the Fabs are located in the backbone of the phagemid vector and the library insert comprises only the variable regions of the antibodies and a central bi-directional promoter. This vector design reduces the process of Fab library construction to scFv-like simplicity and the double promoter ensures robust expression of both constituent chains. To maximize the library size, the 3 fragments comprising the insert - two variable chains and one bi-directional promoter - are assembled via a 3-fragment overlap extension PCR and the insert is incorporated into the vector via a high-efficiency one-fragment, one-pot Golden Gate assembly. The reaction setup requires minimal preparatory work and enzyme quantities, making GBid highly scalable. Using GBid, we constructed a chimeric chicken-human Fab phage display library comprising 1010 variants targeting the multi-transmembrane protein human CD20 (hCD20). Selection/counter-selection on transfected whole cells yielded hCD20-specific antibodies in four rounds of panning. The simplicity and scalability of GBid makes it a powerful tool for the discovery/engineering of Fabs and IgGs.

Go to