Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Lambert, C., Oury, C., Dejardin, E., Chariot, A., Piette, J., Malaise, M., Merville, M. P., Franchimont, N.
  • Year: 2007
  • Journal: J Bone Miner Res 22 1350-61
  • Applications: in vitro / DNA / jetPEI
  • Cell type: MG-63
    Description: Human osteosarcoma
    Known as: MG63

Abstract

The mechanisms of IL-1beta stimulation of OPG were studied in more detail. Whereas p38 and ERK activation was confirmed to be needed, NF-kappaB was not necessary for this regulation. We also found that OPG production after IL-1beta stimulation was not sufficient to block TRAIL-induced apoptosis in MG-63 cells. INTRODUCTION: Osteoprotegerin (OPG) plays a key role in the regulation of bone resorption and is stimulated by interleukin (IL)-1beta. Herein, we defined the mechanisms of IL-1beta stimulation of OPG focusing on the potential involvement of MAPK and NF-kappaB. We also examined whether OPG production in response to IL-1beta influences TRAIL-induced apoptosis in MG-63 cells. MATERIALS AND METHODS: OPG mRNA levels in MG-63 cells were quantified by real-time RT-PCR and protein levels of OPG and IL-6 by ELISA. Cell viability was assessed using the methyltetrazidium salt (MTS) reduction assay. The role of the MAPK pathway was studied by both Western blotting and the use of specific chemical inhibitors. NF-kappaB function was studied using BAY 11-7085 and by siRNA transfection to inhibit p65 synthesis. Transcription mechanisms were analyzed by transiently transfecting MG-63 cells with OPG promoter constructs. Post-transcriptional effects were examined by using cycloheximide and actinomycin D. RESULTS: MG-63 cells treatment with IL-1beta resulted in the phosphorylation of c-Jun NH(2)-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK). The use of the specific inhibitors showed that p38 and ERK but not JNK were needed for IL-1beta-induced OPG production. In contrast, NF-kappaB was not essential for IL-1beta induction of OPG. We also showed a small transcriptional and a possible post-transcriptional or translational regulation of OPG by IL-1beta. Exogenous OPG blocked TRAIL-induced apoptosis, but IL-1beta induction of OPG did not influence TRAIL-induced cell death. CONCLUSIONS: IL-1beta stimulates OPG production by mechanisms dependent on p38 and ERK. In contrast, NF-kappaB was not essential for this regulation. Although the relevance of IL-1beta stimulation of OPG is still not fully understood, our data showed that IL-1beta stimulation of OPG does not modify TRAIL-induced cell death.

Go to