Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Xiao YP. et al.
  • Year: 2020
  • Journal: Eur J Med Chem 207 112799
  • Applications: in vitro / Protein/Peptide/Antibody / PULSin
  • Cell types:
    1. Name: CHO
      Description: Chinese hamster ovary cells
    2. Name: RAW 264.7
      Description: Mouse monocytes/macrophages
      Known as: RAW

Abstract

Emulsions have shown great potential in the delivery of various types of cargoes such as nucleic acids and proteins. In this study, fluorinated polymer emulsions (PFx@PFD-n) were prepared using fluorinated polymers with different structures as surfactant in PFD emulsions under ultrasound. These polymer emulsions gave comparable DNA binding ability compared with corresponding polymers. Heparin competition experiment showed that polymer emulsions could compact DNA or protein to form more stable complexes. In vitro gene transfection results showed that the polymer emulsions could induce higher gene expression than corresponding polymers and polyethyleneimine (PEI), and the transfection efficiency was enhanced with the increase of PFD amount in polymer emulsions. Flow cytometry studies revealed that the emulsions could mediate more efficient cellular uptake with stronger serum tolerance. Moreover, the polymer emulsion could deliver considerable amount of OVA into Raw 264.7 cells at low mass ratio, showing its potential in immunotherapy. The activities of β-galactosidase delivered by the emulsions could also be well maintained after entering cells. This study provides a strategy to construct cationic gene and cytosolic protein vectors with high efficiency and low toxicity.

Go to