Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Jackson, N. M., Ceresa, B. P.
  • Year: 2017
  • Journal: Exp Cell Res 356 93-103
  • Applications: in vitro / siRNA / INTERFERin
  • Cell type: MDA-MB-468

Abstract

The Epidermal Growth Factor Receptor (EGFR) is a cell surface receptor with primary implications in cell growth in both normal and malignant tissue. Paradoxically, cell lines that hyperexpress the EGFR have been documented to undergo receptor-mediated apoptosis. The underlying mechanism by which EGF-induced apoptosis occurs however remains inexplicit. In an attempt to identify this mechanism, we assessed downstream effectors of EGFR in MDA-MB-468 cells during conditions of EGF-induced apoptosis. The effector assessment revealed STAT3 as a potential mediator of EGF-induced apoptosis. Alternative strategies for activating STAT3, independent of EGFR stimulation, resulted in the induction of the apoptotic pathways. A reduction in STAT3 expression via RNAi resulted in a significant attenuation of EGF-induced PARP cleavage. Our findings support STAT3 as a positive mediator of EGF-induced apoptosis in MDA-MB-468 cells.

Go to