Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Sadio, M., Tourneur, E., Bens, M., Goujon, J. M., Vandewalle, A., Chassin, C.
  • Year: 2018
  • Journal: J Innate Immun 10 14-29
  • Applications: in vivo / mimic miRNA, antimiR / in vivo-jetPEI

Method

Mimic miRNA was intraperitoneally injected (2 nmol/mouse) once before the inoculation of bacteria using in vivo-jetPEI.

Abstract

Urinary tract infections (UTIs) mainly due to uropathogenic Escherichia coli (UPEC) are one of the most frequent complications in kidney-transplanted patients, causing significant morbidity. However, the mechanisms underlying UTI in renal grafts remain poorly understood. Here, we analysed the effects of the potent immunosuppressive agent cyclosporine A (CsA) on the activation of collecting duct cells that represent a preferential site of adhesion and translocation for UPEC. CsA induced the inhibition of lipopolysaccharide- induced activation of collecting duct cells due to the downregulation of the expression of TLR4 via the microRNA Let-7i. Using an experimental model of ascending UTI, we showed that the pretreatment of mice with CsA prior to infection induced a marked fall in cytokine production by collecting duct cells, neutrophil recruitment, and a dramatic rise of bacterial load, but not in infected TLR4-defective mice kidneys. This effect was also observed in CsA-treated infected kidneys, where the expression of Let-7i was increased. Treatment with a synthetic Let-7i mimic reproduced the effects of CsA. Conversely, pretreatment with an anti-Let-7i antagonised the effects of CsA and rescued the innate immune response of collecting duct cells against UPEC. Thus, the utilisation of an anti-Let-7i during kidney transplantation may protect CsA-treated patients from ascending bacterial infection.

Go to