Citation

  • Authors: Nkongolo, S., Ni, Y., Lempp, F. A., Kaufman, C., Lindner, T., Esser-Nobis, K., Lohmann, V., Mier, W., Mehrle, S., Urban, S.
  • Year: 2014
  • Journal: J Hepatol 60 723-31
  • Applications: in vitro / DNA / jetPRIME
  • Cell type: Huh7
    Description: Human hepatocarcinoma cells
    Known as: Huh7, Huh 7

Abstract

BACKGROUND & AIMS: Chronic hepatitis B and hepatitis D are global health problems caused by the human hepatitis B and hepatitis D virus. The myristoylated preS1 domain of the large envelope protein mediates specific binding to hepatocytes by sodium taurocholate co-transporting polypeptide (NTCP). NTCP is a bile salt transporter known to be inhibited by cyclosporin A. This study aimed to characterize the effect of cyclosporin A on HBV/HDV infection. METHODS: HepaRG cells, primary human hepatocytes, and susceptible NTCP-expressing hepatoma cell lines were applied for infection experiments. The mode of action of cyclosporin A was studied by comparing the effect of different inhibitors, cyclophilin A/B/C-silenced cell lines as well as NTCP variants and mutants. Bile salt transporter and HBV receptor functions were investigated by taurocholate uptake and quantification of HBVpreS binding. RESULTS: Cyclosporin A inhibited hepatitis B and D virus infections during and--less pronounced--prior to virus inoculation. Binding of HBVpreS to NTCP was blocked by cyclosporin A concentrations at 8 muM. An NTCP variant deficient in HBVpreS binding but competent for bile salt transport showed resistance to cyclosporin A. Silencing of cyclophilins A/B/C did not abrogate transporter and receptor inhibition. In contrast, tacrolimus, a cyclophilin-independent calcineurin inhibitor, was inactive. CONCLUSIONS: HBV and HDV entry via sodium taurocholate co-transporting polypeptide is inhibited by cyclosporin A. The interaction between the drug and the viral receptor is direct and overlaps with a functional binding site of the preS1 domain, which mediates viral entry.

Pubmed