Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Wang, Q., Wang, C., Li, N., Liu, X., Ren, W., Wang, Q., Cao, X.
  • Year: 2018
  • Journal: J Autoimmun 92 67-76
  • Applications: in vitro / DNA, oligonucleotide / jetPEI
  • Cell type: RAW 264.7
    Description: Mouse monocytes/macrophages
    Known as: RAW

Method

For CRISPR applications. Cas9 and gRNA were transfected.

Abstract

Structural maintenance of chromosome (Smc) protein complex (condensin) plays a central role in organizing and compacting chromosomes, which determines DNA-binding activity and gene expression; however, the role of condensin Smc in innate immunity and inflammation remains largely unknown. Through a high-throughput screening of the epigenetic modifiers, we identified Smc4, a core subunit of condensin, to potentially promote inflammatory innate immune response. Knockdown or deficiency of Smc4 inhibited TLR- or virus-triggered production of proinflammatory cytokines IL-6, TNF-alpha and IFN-beta in macrophages. Mice with Smc4 knockdown were less susceptible to sepsis. Mechanistically, Smc4 enhanced NEMO transcription by recruiting H4K5ac to and increasing H4K5 acetylation of nemo promoter, leading to innate signals-triggered more potent activation of NF-kappaB and IRF3 pathways. Therefore, Smc4 promotes inflammatory innate immune responses by enhancing NEMO transcription, and our data add insight to epigenetic regulation of innate immunity and inflammation, and outline potential target for controlling inflammatory diseases.

Go to