Citation

  • Authors: Rong Y. et al.
  • Year: 2022
  • Journal: ACS Infect Dis
  • Applications: in vitro / DNA / FectoPRO
  • Cell type: HEK-293F

Method

To obtain purified soluble ST3GAL1 and human ST6GALNAC1, the expression vector was transfected into HEK293f cells using FectoPRO transfection reagent (Polyplus).

Abstract

Harnessing highly conserved peptides derived from the receptor binding domain (RBD) of spike (S) protein to construct peptide-based inhibitors is one of the most effective strategies to fight against the ever-mutating coronavirus SARS-CoV-2. But how the O-glycosylation affects their inhibition abilities has not been intensively explored. Herein, an intrinsic O-glycosylated peptide P320-334 derived from RBD was screened and homogeneous O-linked glycopeptides containing Tn (GalNAcα1-O-Ser/Thr), T (Galβ1-3GalNAcα1-O-Ser/Thr), sialyl-Tn (sTn, Siaα2-6GalNAcα1-O-Ser/Thr), and sialyl-T (sT, Siaα2-3Galβ1-3GalNAcα1-O-Ser/Thr) structures were first synthesized via chemoenzymatic strategies. Compared with the unglycosylated peptide, the binding of sT-P320-334 to hACE2 was enhanced to 133% and the inhibition capacity against RBD-hACE2 binding of sTn- and sT-P320-334 was significantly increased up to 150-410%. Thus, our results suggest the sialic acid residue on the terminal of short O-glycan structures might strengthen the inhibition capacities of these peptide-based inhibitors, which might provide novel optimization directions for the inhibitor design.

Go to