Citation

  • Authors: Chen, L. H., Loong, C. C., Su, T. L., Lee, Y. J., Chu, P. M., Tsai, M. L., Tsai, P. H., Tu, P. H., Chi, C. W., Lee, H. C., Chiou, S. H.
  • Year: 2011
  • Journal: Biochem Pharmacol 81 594-605
  • Applications: in vitro / siRNA / INTERFERin
  • Cell types:
    1. Name: HA22T/VGH
      Description: Human hepatoma cells
    2. Name: Mahlavu
      Description: Human hepatoma cells

Abstract

In a previous study, BO-1051, an N-mustard linked with a DNA-affinic molecule, was shown to target various types of cancer cell lines. In the present study, we aimed to investigate the cytotoxicity, as well as the underlying mechanism, of BO-1051. We found that BO-1051 simultaneously induced apoptosis and autophagy in hepatocellular carcinoma cell lines. DNA double strand breaks induced by BO-1051 activated the ATM signaling pathway and subsequently resulted in caspase-dependent apoptosis. When autophagy was inhibited in its early or late stages, apoptosis was significantly enhanced. This result indicated autophagy as a cytoprotective effect against BO-1051-induced cell death. We further inhibited ATM activation using an ATM kinase inhibitor or ATM-specific siRNA and found that while apoptosis was blocked, autophagy also diminished in response to BO-1051. We not only determined a signaling pathway induced by BO-1051 but also clarified the linkage between DNA damage-induced apoptosis and autophagy. We also showed that BO-1051-induced autophagy acts as a cytoprotective reaction and downstream target of the ATM-signaling pathway. This research revealed autophagy as a universal cytoprotective response against DNA damage-inducing chemotherapeutic agents, including BO-1051, cisplatin, and doxorubicin, in hepatocellular carcinoma cell lines. Autophagy contributes to the remarkable drug resistance ability of liver cancer.

Go to