Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Andrieux, L., Langouet, S., Fautrel, A., Ezan, F., Krauser, J. A., Savouret, J. F., Guengerich, F. P., Baffet, G., Guillouzo, A.
  • Year: 2004
  • Journal: Mol Pharmacol 65 934-43
  • Applications: in vitro / DNA / jetPEI-Hepatocyte
  • Cell type: B16A2
    Description: Human hepatoma cells

Abstract

The aryl hydrocarbon receptor (AhR) is involved in various processes such as cytochrome P450 (P450) 1A induction after xenobiotic exposure. It is also considered to play a major role in cell proliferation and differentiation. Recent evidences have suggested a cross-talk between AhR functions and the mitogen-activated protein kinase (MAPK) cascade. We now report that 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126), a specific inhibitor of MAPK kinase (MEK) MEK1/2, elicits a marked increase in CYP1A1 expression at both mRNA and protein levels associated with a significant increase of enzyme activity in primary rat hepatocytes and a human hepatoma cell line. This induction occurred independently of MEK/extracellular signal-regulated kinase (ERK) activation and in the absence of ERK1 and ERK2 expression. The effect of U0126 was mediated by its ability to transactivate xenobiotic responsive element (XRE)-driven genes, as demonstrated by transfection assays with an XRE-driven luciferase construct in the human B16A2 hepatoma cell line. CYP1A1 modulation was abolished by a cotreatment with resveratrol, an established AhR antagonist, arguing for AhR activation by U0126. Such an effect was demonstrated by direct in vitro ligand binding competition assays using rabbit liver cytosol, showing that this compound binds AhR with an EC(50) = 25 x 10(-6) M. Moreover, we demonstrated that U0126 is a substrate for several P450s including human CYP1A2, -1A1, and -1B1. We conclude that the widely used specific inhibitor of MEK/ERK, U0126, also acts as a potent AhR activator and an inducer of related genes. Such effects on the AhR may have an impact on biological functions attributed previously to MAPK inhibition.

Go to