Citation

  • Authors: Luo, M., Wang, H., Wang, Z., Cai, H., Lu, Z., Li, Y., Du, M., Huang, G., Wang, C., Chen, X., Porembka, M. R., Lea, J., Frankel, A. E., Fu, Y. X., Chen, Z. J., Gao, J.
  • Year: 2017
  • Journal: Nat Nanotechnol 12 648-654
  • Applications: in vivo / DNA / in vivo-jetPEI

Method

Bacterial pDNA was prepared using an endotoxin-free kit. Mice were intravenously injected with 30 µg pDNA mixed with in vivo-jetPEI.

Abstract

The generation of tumour-specific T cells is critically important for cancer immunotherapy. A major challenge in achieving a robust T-cell response is the spatiotemporal orchestration of antigen cross-presentation in antigen-presenting cells with innate stimulation. Here, we report a minimalist nanovaccine, comprising a simple physical mixture of an antigen and a synthetic polymeric nanoparticle, PC7A NP, which generates a strong cytotoxic T-cell response with low systemic cytokine expression. Mechanistically, the PC7A NP achieves efficient cytosolic delivery of tumour antigens to antigen-presenting cells in draining lymph nodes, leading to increased surface presentation while simultaneously activating type I interferon-stimulated genes. This effect is dependent on stimulator of interferon genes (STING), but not the Toll-like receptor or the mitochondrial antiviral-signalling protein (MAVS) pathway. The nanovaccine led to potent tumour growth inhibition in melanoma, colon cancer and human papilloma virus-E6/E7 tumour models. The combination of the PC7A nanovaccine and an anti-PD-1 antibody showed great synergy, with 100% survival over 60 days in a TC-1 tumour model. Rechallenging of these tumour-free animals with TC-1 cells led to complete inhibition of tumour growth, suggesting the generation of long-term antitumour memory. The STING-activating nanovaccine offers a simple, safe and robust strategy in boosting anti-tumour immunity for cancer immunotherapy.

Go to