Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Wang R. et al.
  • Year: 2021
  • Journal: Virology 558 49-56
  • Applications: in vitro / DNA / FectoPRO
  • Cell type: FreeStyle 293-F

Method

- For the expression of antibodies, FreeStyle™293-E cells were transfected using the FectoPRO transfection reagent (Polyplus-transfection). - Three days later, antibody-containing supernatants were harvested and purified using HiTrap MabSelect Xtra and HiTrap SP FF.

Abstract

In tropical and subtropical countries, dengue virus (DENV) infections have been increasing; however, we still lack effective therapy. In the present study, we aimed to engineer a bispecific antibody (subsequently named LUZ-8F2-6B1), based on monoclonal antibody 6B1, which has anti DENV-1, 2, and 3 activity, and 8F2, which has anti DENV-4 activity. LUZ-8F2-6B1 displayed potent neutralization activity against four serotypes of DENV by binding to the envelop protein. In vivo, we demonstrated that LUZ-8F2-6B1 could provide protection against infection by four serotypes of DENV in a mouse model. In addition, the deletion of nine amino acids in the Fc region (LUZ-8F2-6B1-9del) completely abolished the antibody-dependent enhancement observed at lower doses of the antibody. Thus, LUZ-8F2-6B1 is a promising, safe, and effective agent for the prophylaxis and treatment of DENV infection.

Go to