Citation

  • Authors: Yu, X., Wang, Y., Xia, Y., Zhang, L., Yang, Q., Lei, J.
  • Year: 2016
  • Journal: Vaccine 34 4399-405
  • Applications: in vivo / DNA / in vivo-jetPEI

Method

20 µg of DNA was injected intramuscularly to mice twice every two weeks to perform DNA vaccination. Analysis was performed 4 weeks after final immunization.

Abstract

Pseudomonas aeruginosa antimicrobial resistance is a major therapeutic challenge. DNA vaccination is an attractive approach for antigen-specific immunotherapy against P. aeruginosa. We explored the feasibility of employing Herpes simplex virus type 1 tegument protein, VP22, as a molecular tool to enhance the immunogenicity of an OprF DNA vaccine against P. aeruginosa. Recombinant DNA vaccines, pVAX1-OprF, pVAX1-OprF-VP22 (encoding a n-OprF-VP22-c fusion protein) and pVAX1-VP22-OprF (encoding a n-VP22-OprF-c fusion protein) were constructed. The humoral and cellular immune responses and immune protective effects of these DNA vaccines in mice were evaluated. In this report, we showed that vaccination with pVAX1-OprF-VP22 induced higher levels of IgG titer, T cell proliferation rate. It also provided better immune protection against the P. aeruginosa challenge when compared to that induced by pVAX1-OprF or pVAX1-VP22-OprF DNA vaccines. Molecular mechanistic analyses indicated vaccination with pVAX1-OprF-VP22 triggered immune responses characterized by a preferential increase in antigen specific IgG2a and IFN-gamma in mice, indicating Th1 polarization. We concluded that VP22 is a potent stimulatory molecular tool for DNA vaccination when fused to the carboxyl end of OprF gene. Our study provides a novel strategy for prevention and treatment of P. aeruginosa infection.

Go to