Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Summary

Presentation by Mathieu Porte R&D Manager, BioProduction & Malik Hellal, PhD, Senior Scientist, Chemistry. Webinar hosted by Bioinsight.

The number of ATMP therapeutic-based medicines for inherited genetic disorders is in constant growth, with a global 32% increase in new clinical trials in the last 4 years. ATMPs have demonstrated their success with already more than ten approved for commercialization.

The success of AAV as the most promising viral vector for gene therapy is due to low immunogenicity, broad tropism and non-integrating properties. One major challenge for translation of promising research to clinical development is the manufacture of sufficient quantities of AAV. Transient transfection of suspension cells is the most commonly used production platform, as it offers significant flexibility for cell and gene therapy development. However, this method shows some limitations in large scale bioreactors: inadequate transfection protocol, reduced transfection efficiency and lower productivity.

To address this concern, we present data on the novel transfection reagent showing: i) increased AAV titers, ii) improved transfection protocol for large scale bioreactors and iii) reproducibility of viral titers at different production scale. The aforementioned optimized parameters make this novel transfection reagent ideal for cell and gene therapy developers by combining the flexibility of transient transfection with scalability and speed to market.

Attendees will learn:

  • How to improve AAV viral vector yields by focusing on transfection step.
  • How to perform transfection at large scale.
  • How to ensure reproducibility at different production scales.
Duration
60 minutes
Learn more

Resources

Articles

FectoVIR®-AAV, a giant step for AAV large scale manufacturing

Pressroom

Polyplus-transfection® launches FectoVIR®-AAV

View All Resources