Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Li, Y. Y., Xie, X. L., Ma, X. Y., Liu, H. P.
  • Year: 2019
  • Journal: Dev Comp Immunol 91 101-107
  • Applications: in vitro / Protein/Peptide/Antibody / PULSin
  • Cell type: Crayfish hematopoietic cells

Method

300 ng rCqCaspase + 1 µL PULSin in 96-well plate 1 µg rCqCaspase + 2 µL PULSin in 24-well plate

Abstract

Caspase, an aspartate specific proteinase mediating apoptosis, plays a key role in immune response. In our previous study, the expression of a caspase gene was up-regulated in a transcriptome library from the haematopoietic tissue (Hpt) cells of red claw crayfish Cherax quadricarinatus post white spot syndrome virus (WSSV) infection. To further reveal the effect of caspase on WSSV infection, we cloned this caspase gene (denominated as CqCaspase) with an open reading frame of 1062 bp, which encoded 353 amino acids with a caspase domain (CASc) containing a p20 subunit and a p10 subunit. Tissue distribution analysis indicated that the mRNA transcript of CqCaspase was widely expressed in all tested tissues with the highest expression in Hpt, while the lowest expression in muscle. To further explore the effect of CqCaspase on WSSV replication, recombinant protein of CqCaspase (rCqCaspase) was delivered into Hpt cells followed by WSSV infection, which resulted in a significantly decreased expression of both an immediate early gene IE1 and a late envelope protein gene VP28 of WSSV, suggesting that CqCaspase, possibly by the enhanced apoptotic activity, had a strong negative effect on the WSSV replication. These data together indicated that CqCaspase was likely to play a vital role in immune defense against WSSV infection in a crustacean C. quadricarinatus, which shed a new light on the mechanism study of WSSV infection in crustaceans.

Go to