Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Cascella, R., Fani, G., Capitini, C., Rusmini, P., Poletti, A., Cecchi, C., Chiti, F.
  • Year: 2017
  • Journal: FASEB J 31 5609-5624
  • Applications: in vitro / Protein/Peptide/Antibody / PULSin
  • Cell types:
    1. Name: N2A
      Description: Murine neuroblastoma cells
      Known as: Neuro2A
    2. Name: NSC-34
      Description: Mouse hybrid cell line.
      Known as: NSC34.

Abstract

Amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions are neurodegenerative disorders that share the cytosolic deposition of TDP-43 (TAR DNA-binding protein 43) in the CNS. TDP-43 is well known as being actively degraded by both the proteasome and macroautophagy. The well-documented decrease in the efficiency of these clearance systems in aging and neurodegeneration, as well as the genetic evidence that many of the familial forms of TDP-43 proteinopathies involve genes that are associated with them, suggest that a failure of these protein degradation systems is a major factor that contributes to the onset of TDP-43-associated disorders. Here, we inserted preformed human TDP-43 aggregates in the cytosol of murine NSC34 and N2a cells in diffuse form and observed their degradation under conditions in which exogenous TDP-43 is not expressed and endogenous nuclear TDP-43 is not recruited, thereby allowing a time zero to be established in TDP-43 degradation and to observe its disposal kinetically and analytically. TDP-43 degradation was observed in the absence and presence of selective inhibitors and small interfering RNAs against the proteasome and autophagy. We found that cytosolic diffuse aggregates of TDP-43 can be distinguished in 3 different classes on the basis of their vulnerability to degradation, which contributed to the definition-with previous reports-of a total of 6 distinct classes of misfolded TDP-43 species that range from soluble monomer to undegradable macroaggregates. We also found that the proteasome and macroautophagy-degradable pools of TDP-43 are fully distinguishable, rather than in equilibrium between them on the time scale required for degradation, and that a significant crosstalk exists between the 2 degradation processes.-Cascella, R., Fani, G., Capitini, C., Rusmini, P., Poletti, A., Cecchi, C., Chiti, F. Quantitative assessment of the degradation of aggregated TDP-43 mediated by the ubiquitin proteasome system and macroautophagy.

Go to