Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Lv, G., Wu, M., Wang, M., Jiang, X., Du, J., Zhang, K., Li, D., Ma, N., Peng, Y., Wang, L., Zhou, L., Zhao, W., Jiao, Y., Gao, X., Hu, Z.
  • Year: 2017
  • Journal: Liver Int 37 1354-1364
  • Applications: in vitro / DNA, siRNA / INTERFERin, jetPEI
  • Cell types:
    1. Name: Hep G2
      Description: Human hepatocarcinoma cells
    2. Name: SK-HEP-1

Abstract

BACKGROUND & AIMS: Several studies have shown that miR-320a induces apoptosis, inhibits cell proliferation, and affects cell cycle progression as a tumour suppressor in many cancers. However, the involvement of miR-320a in the invasion and metastasis of hepatocellular carcinoma (HCC) is still unknown. METHODS: Endogenous miR-320a and high mobility group box 1 (HMGB1) expressions were assayed by real-time PCR. Luciferase activities were measured using a dual-luciferase reporter assay system. Western blots were used to determine the protein expressions of HMGB1, MMP2, and MMP9. Invasion and metastasis of tumour cells were, respectively, evaluated by the transwell invasion assay and the wound healing assay. RESULTS: The expression of miR-320a was significantly decreased in 24 of 32 (75%) HCC tissues and associated with the invasion and metastasis of HCC. Furthermore, we demonstrated that HMGB1 was a direct target of miR-320a and there was a significant negative correlation between miR-320a and HMGB1 expression in HCC. Ectopic expression or inhibition of miR-320a potently regulated the invasion and metastasis of HCC cells in HMGB1-dependent manner. CONCLUSIONS: Our results showed that miR-320a was involved in the invasion and metastasis by targeting HMGB1 and had an anti-metastasis effect in HCC.

Go to