Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Pello, O. M., Moreno-Ortiz Mdel, C., Rodriguez-Frade, J. M., Martinez-Munoz, L., Lucas, D., Gomez, L., Lucas, P., Samper, E., Aracil, M., Martinez, C., Bernad, A., Mellado, M.
  • Year: 2006
  • Journal: Blood 108 3928-37
  • Applications: in vitro / DNA / jetPEI
  • Cell type: HEK-293
    Description: Human embryonic kidney Fibroblast
    Known as: HEK293, 293

Abstract

The chemokine CXCL12 influences self-renewal and differentiation of hematopoietic stem cell precursors in bone marrow by directing them toward specific stromalcell components. CXCL12 up-regulates members of the SOCS family through JAK/STAT activation, a mechanism that attenuates chemokine responses. SOCS expression may thus modulate retention of hematopoietic precursors (Sca-1(+) c-Kit(+)Lin(-) cells) in bone marrow. We show that in bovine growth hormone transgenic mice and in growth hormone-treated mice, SOCS up-regulation correlated with a large number of Sca-1(+) c-Kit(+)Lin(-) cells in blood. Retroviral transduction of SOCSs blocked in vitro migration of Sca-1(+)c-Kit(+)Lin(-) cells, as well as their capacity to reconstitute lethally irradiated mice. Furthermore, in lethally irradiated mice reconstituted with bone marrow infected by a tetracycline-regulated, SOCS-expressing lentiviral vector, doxycycline treatment promoted rapid, extensive precursor mobilization to the periphery. The results indicate that by blocking CXCR4-mediated functions, SOCSs modulate hematopoietic precursor cell retention in bone marrow, and suggest the therapeutic interest of SOCS manipulation in several pathologic situations.

Go to