Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Kong, L. M., Liao, C. G., Zhang, Y., Xu, J., Li, Y., Huang, W., Bian, H., Chen, Z. N.
  • Year: 2014
  • Journal: Cancer Res 74 3764-78
  • Applications: in vivo / mimic miRNA / in vivo-jetPEI

Method

20µg of miRNA mimic were complexed with in vivo-jetPEI in a total volume of 100 µl and injected into orthotopic mammary gland tumors (MDA-MB-231 cells injected into the mammary fat pad) of nude mice. The injections were performed every other day from day 13 to day 31 after cell inoculation.

Abstract

Breast cancer is the most common cancer in women for which the metastatic process is still poorly understood. CD147 is upregulated in breast cancer and has been associated with tumor progression, but little is known about its regulatory mechanisms. In this study, we demonstrated that CD147 was overexpressed in breast cancer tissues and cell lines, and the high expression correlated with tumor invasion and metastasis. We also found that the transcription factors Sp1 and c-Myc could bind to the CD147 promoter and enhance its expression. The CD147 mRNA has a 748-bp 3'-untranslated region (UTR) with many miRNA target sites, suggesting possible regulation by miRNAs. We discovered that miR-22 repressed CD147 expression by directly targeting the CD147 3'UTR. We also determined that miR-22 could indirectly participate in CD147 modulation by downregulating Sp1 expression. miR-22 could form an autoregulatory loop with Sp1, which repressed miR-22 transcription by binding to the miR-22 promoter. Together with the c-Myc-mediated inhibition of miR-22 expression, our investigation identified a miR-22/Sp1/c-Myc network that regulates CD147 gene transcription. In addition, miR-22 overexpression suppressed breast cancer cell invasion, metastasis, and proliferation by targeting CD147 in vitro and in vivo. Furthermore, we found that miR-22 was significantly downregulated in breast cancer tissues and that its expression was inversely correlated with the tumor-node-metastasis stage and lymphatic metastasis in patients. Our study provides the first evidence that an miR-22/Sp1/c-Myc network regulates CD147 upregulation in breast cancer and that miR-22 represses breast cancer invasive and metastatic capacities.

Go to