Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: George, J., Tsutsumi, M.
  • Year: 2007
  • Journal: Gene Ther 14 790-803
  • Applications: in vivo / shRNA plasmid / in vivo-jetPEI

Method

shRNA was delivered by intraperitoneal injections into the liver of Wistar rats. Animals were also injected with luciferase plasmid at the concentration of 1 mg/kg body weight.

Abstract

Hepatic fibrosis is a dynamic process that involves the interplay of different cell types in the hepatic tissue. Connective tissue growth factor (CTGF) is a highly profibrogenic molecule and plays a crucial role in the pathogenesis of hepatic fibrosis. The aim of the present investigation was three-fold. First, we studied the expression of CTGF in the cultured hepatic stellate cells using immunohistochemical technique. Second, we induced hepatic fibrosis in rats through serial intraperitoneal injections of N-nitrosodimethylamine (NDMA; dimethylnitrosamine, DMN) and studied the upregulation of CTGF and TGF-beta1 during hepatic fibrogenesis. Third, we downregulated CTGF expression using CTGF siRNA and examined the role of CTGF siRNA to prevent the progression of NDMA-induced hepatic fibrosis. The results depicted strong staining of CTGF in the transformed hepatic stellate cells in culture. Serial administrations of NDMA resulted in activation of hepatic stellate cells, upregulation of CTGF and TGF-beta1 both at mRNA and protein levels and well-developed fibrosis in the liver. Immunostaining, Western blot analysis, semiquantitative and real-time RT-PCR studies showed downregulation of CTGF and TGF-beta1 after treatment with CTGF siRNA. The results of the present study demonstrated that CTGF gene silencing through siRNA reduces activation of hepatic stellate cells, prevents the upregulation of CTGF and TGF-beta1 gene expression and inhibits accumulation of connective tissue proteins in the liver. The data further suggest that knockdown of CTGF upregulation using siRNA has potential therapeutic application to prevent hepatic fibrogenesis.

Go to