Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Citation

  • Authors: Furusawa, Y., Fujiwara, Y., Hassan, M. A., Tabuchi, Y., Morita, A., Enomoto, A., Kondo, T.
  • Year: 2012
  • Journal: Cancer Lett 322 107-12
  • Applications: in vitro / siRNA / INTERFERin
  • Cell type: Molt-4
    Description: Human acute T cell leukemia

Method

100 nM

Abstract

Ultrasound (US) has been shown to induce cell death in cancer cells; however, the underlying mechanism remains elusive. Here, we report a set of novel findings on the molecular mechanism. We found that Akt (also known as protein kinase B), a substrate of DNA-dependent protein kinase (DNA-PK), was phosphorylated in U937 cells nullified with p53 or Molt-4 cells artificially abrogated with p53 after US exposure. On the contrary, Akt phosphorylation was transiently down-regulated then recovered in Molt-4 cells harboring wild-type p53 in US-exposed cells, possibly due to a mutual regulation between p53 and Akt. Inhibition of ataxia-telangiectasia mutated (ATM) or DNA-PK revealed that DNA-PK, rather than ATM, was preferentially involved in Akt phosphorylation and cell survival after US-exposure in all cell lines. These results indicate that DNA-PK plays a protective role against US-induced cell death regardless of p53 phenotype. In conclusion, our findings provide the first delineation of the role of DNA-PK in US-induced cell death and suggest that targeting DNA-PK might be a promising strategy to augment cancer eradication by US.

Go to